Mathematical Scratchpad

1  Semester Review

1.1  The Big Picture:

1.1.1  Chapter 5: Presents the basics of the theory of integration

1.1.2  Chapter 6: Many applications of definite integrals

1.1.3  Chapter 7: How to find antiderivatives

1.1.4  Chapter 8: Sequences and Series

1.2  


The Medium Picture:

1.2.1  Chapter 5

The basic theory of integration  

1.2.2  Chapter 6

Applications of Definite Integrals  

1.2.3  Chapter 7

Methods of Integration  

1.2.4  Chapter 8

Infinite sequences and series  

2  More Detailed Outline

2.1  Chapter 5: The fundamentals of integration



2.2  Chapter 6: Applications of definite integrals


2.3  Chapter 7: Methods of Integration

2.4  Chapter 8: Sequences and Series

Tests for Convergence of åk¥ak  

Absolute and Conditional Convergence  

2.4.1  Power Series

2.4.2  Taylor Series and Maclaurin Series


2.5  Analogies between Sequences/Series and Functions/Integrals


Functions/Integrals Sequences/Series
derivatives differences
antiderivatives ( òf( x)  dx ) partial sums ( An = åk = 1nak)
asymptotic behavior (limx® ¥f( x) ) limit of a sequence (limn® ¥an)
improper integrals (ò1¥f( x)  dx ) Infinite series (åk = 1¥ak )
Div. Test: limx® ¥f( x) not 0 implies ò1¥f( x)  dx div. limn®¥an not 0 implies åk = 1¥ak diverges
Functions as integrals (G( x) = ò0¥tx-1e-t dt ) Functions as series ( åk = 1¥akxk )




File translated from TEX by TTH, version 2.73.
On 4 Dec 2001, 07:28.